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Abstract: In this paper, a very simple method is used to derive the weakly
singular traction boundary integral cquation based on the integral relationships for
displacement gradients [Okada, Rajiyah and Atluri, 1989]. The concept of the MLPG
method is employed to solve the integral equations, especially those arising in solid
mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the
trial functions in this paper. Five boundary integral solution methods are introduced:
direct solution method; displacement boundary-value problem; traction boundary-value
problem; mixed boundary-value problem; and boundary variational principle. Based on
the local weak form of the BIE, four different nodal-based local test functions are
selected, leading to four different MLPG methods for each BIE solution method. These
methods combine the advantages of the MLPG method and the boundary element

method.



1. Introduction

Numerical methods based on integral equation formulations of continuum mechanics,
have become increasingly popular, for the solution of practical engineering problems.
The integral equation methods can be considered to be derivable from the global
unsymmetrical weak forms and Petrov-Galerkin approximation schemes (Zhang and
Atluri, 1986, 1988). In thesc methods, the trial and test function-spaces are quite different
from cach other. The test functions correspond to fundamental solutions, in infinite space,
of the differential operator of the problem, and hence are usually infinitely differentiable,
cxcept possibly at the singular points. If the fundamental solution can be derived for the
entire differential operator of the problem, the integral representations involve only
boundary-integrals, whose descretizations lead to the “boundary element method”.

In practice, information about the tractions on an oriented surface in the
continuum is often requircd, so it is necessary to introduce an integral relation for the
tractions. Such a traction integral cquation is most often derived directly from the
displacement integral equation, by a direct differentiation of the displacement integral
equation. The resulting relation, however, contains a hypersingular kernel. The numerical
solution of the hypersingular traction integral cquation is challenging; and various
strategies have been developed to cope with these difficulties. On the other hand, a
distinctly different approach was presented by Okada, Rajiyah and Atluri (1989),
[wherein they use the gradients of the fundamental solution as the test functions, instead
of the fundamental solution itsclf], in ovder to obtain a singularity-reduced traction
integral equation. Li and Mear (1998), Li, Mcar and Xiao (1998) also devcloped a
weakly singular global weak-form traction integral equation. They follow a systematic
approach of regularization, in which stress functions associated with certain fundamental

solutions are utilized to affect a global “integration-by-parts”. Based on the weakly



singular global weak-form integral equations, the symmetric Galerkin boundary element
method (SGBEM) [Bonnet, Maier and Polizzotto (1998)] can be developed. However, in
this paper, based on the singularity-reduced traction integral formulation of Okada,
Rajivah and Atluri (1989), we will develop a weakly singular local weak-form traction
integral equation, without the introduction of stress functions. Our derivation is much
simpler and direct than that of Li and Mear (1998).

Meshless methods, as alternative numerical approaches to eliminate the well-
known drawbacks in the finitc clement and boundary clement methods, have attracted
much attention in recent decades, due to their flexibility, and due to their potential in
negating the necd for the human-labor intensive process of constructing geometric
meshes in a domain. Such meshless methods are especially useful in problems with
discontinuities or moving boundaries. The main objective of the meshless methods is to
get rid of, or at least alleviate the difficulty of, meshing and remeshing the entire
structure; by only adding or delcting nodes in the entire structure, instead. Meshless
methods may also alleviate some other problems associated with the finite element
method, such as locking, element distortion, and others.

Recently, the meshless local Petrov-Galerkin (MLPG) method, has been
developed, in two of its alternate forms, in Zhu, Zhang and Atluri (1998a, b), Atluri &
Zhu (1998a, b) and Atluri, Kim and Cho (1999), for solving linear and non-linear
boundary problems. This method is truly meshless, as no finite element/or boundary
element meshes are required, cither for the purposes of interpolation of the trial and test
functions for the solution variables, or for the purpose of integration of the ‘energy’. All
pertinent integrals can be easily evaluated over over-lapping, regularly shaped, domains
(in general, spheres in thrce-dimensional problems) and their boundaries. Remarkable
successes of the MLLPG method have been reported in solving the convection-diffusion
problems [Lin & Atluri (2000)}; fracturc mechanics problems [Kim & Atluri (2000),

Ching & Batra (2001)]; Navier-Stokes flows [Lin & Atluri (2001)]; and plate bending



problems [Gu & Liu (2001); Long & Atluri (2002)]. A comparison study of the
efficiency and accuracy of a varicty of meshless trial and test functions is presented in
Atluri and Shen (2002a, b), bascd on the general concept of the meshless local Petrov-
Galerkin (MLPG) method.

In summary, the MLPG method is a truly meshless method, which involves not
only a meshless interpolation for the trial functions (such as MLS, PU, Shepard function
or RBF), but also a meshlcss intcgration of the weak-form (i.e. all intcgrations are always
performed over rcgularly shaped sub-domains such as spheres, parallelopipeds, and
ellipsoids in 3-D). In the conventional Galerkin method, the trial and test functions arc
chosen from the same function-space. In MLPG, the nodal trial and test {unctions can be
different: the nodal trial function may correspond to any one of MLS, PU, Shepard
function, or RBF types of interpolations; and the test function may be totally different,
and may correspond to any one of MLS, PU, Shepard function, RBF, a Heaviside step
function, a Dirac delta function, the Gaussian weight function of MLS, or any other
convenient function. Furthermore, the physical sizes of the supports of the nodal trial and
test functions may be different. These features make the MLPG method very flexible.
The MLPG method, based on a local formulation, can include all the other meshless
methods based on global formulation, as special cases.

In this paper, we usc the concept of the MLPG method to formulate
computational approaches to solve the integral equations, especially those arising in solid
mechanics. A Moving Least Squarcs (MLS) interpolation is used to approximat the trial
functions in this paper, although this is arbitrary. Four different nodal-based local test
functions are also selected, leading to four differcnt MLPG methods for BIE. Based on
the MLPG concept [Atluri and Shen (2002a)], we label these variants of the MLPG
method for solving the boundary intcgral cquations as MLPG/BIE1, MLPG/BIE 2,
MLPG/BIE 5, and MLPG/BIE 6, respectively [in conformity with the labeling introduced

in Atluri & Shen (2002a, b)].



The paper is organized as follows. In Section 2, we introduce the MLS
approximation over the surface of a 3-D solid, using arbitrary curvilinear co-ordinates. In
Section 3 are derived the weakly singular boundary integral equations, based on the result
from Okada, Rajiyah and Atluri (1989), and the results are shown (o be identical to those
in Li and Mear (1998). In Scction 4, five boundary integral solution methods are
introduced: the direct solution method; displacement boundary-value problem; traction
boundary-value problem; mixed boundary-valuc problem; and the boundary variational
principle. Local weak forms for the boundary integral equations arc introduced in each
of these boundary integral equation (BIE) solution methods; four different nodal-based
local test functions are selected; and thus four different MLPG methods arc developed in

each of those BIE solution methods. The paper concludes in Section 5.

2. Moving least-squares method (MLS) in Curvilinear Coordinates, on

the Boundary of a 3-D Body

Since the nodes lie only on the boundary dQ (a curved surface in 3-D space) of a 3-D
body Q, curvilinear co-ordinates are neccssary to define the MLS interpolates on the
surface. The moving least-square mcthod is generally considered to be onc of the best
schemes to interpolate data with a reasonable accuracy. The MLS interpolation does not
pass through the nodal data. Here we give a bricf summary of the MLS approximation for
curvilinear co-ordinates. For details of the MLS approximation, see Belytschko et al.
(1996), Atluri, Cho and Kim (1999), and Atluri and Shen (2002a).

Consider a surface 'y, which is defined as the neighborhood of a point s and
denoted as the domain of definition of the MLS approximation for the trial function at s,
and which is located in the problem surface dQ. To approximate the distribution of the
function 1 in [y, over a number of randomly located nodes i, ), I=1,2,..., N, the moving

least squares approximant ul'(s) of u, VseT%, can be defined by



u"(s)=p" () Vsely ()

where pT(s)z[pl(s), pa(S), ..., pm(s)] is a complete monomial basis, and a(s) is a vector
containing coefficients a(s), j=1, 2, ...,m which are functions of the spatial curvilinear
coordinates s=[s', .s'ZJT. The commonly used bases in 2-D are the linear basis, due to their
simplicity. The linear basis assurcs that the MLS approximation has the linear
completeness. Thus, it can reproduce any smooth function and its first derivative with
arbitrary accuracy, as the approximation is refined. It is also possible to use other
functions in a basis. For example, in problems with singular solutions, singular functions
can be included in the basis.

The coefficient vector a(s) is determined by minimizing a weighted discrete L;

norm, which can be defined as

ZWI L (s; Jals )~u]z 2)

where wy(s) is a weight function associated with the node I, with w(s)>0 for all s in the
support of wy(s), s; denotes the value of s at node 1, N is the number of nodes in I'y for
which the weight functions w(s)>0.
Here it should be noted that ', I=1, 2,..., N, in equation (2), are the fictitious
nodal values, and not the actual nodal values of the unknown trial function u"(s).
Substituting a(s), which is solved by minimizing J in equation (2), into equation
(1), give a relation which may be written in the form of an interpolation function similar

to that used in the FEM, as
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The partial derivatives of ¢(s) arc obtained as

o =S p, (A B), +p,(A B, +A7B) ] )

where A"k‘ = (A - )k denotes the derivative of the inverse of A with respect to .x‘k, which is

given by

Al =-ATA AT (8)

The MLS approximation is well defined, only when the matrix in eqn (5) is non-
singular. ¢'(s) is usually called the shape function of the MLS approximation,
corresponding to the nodal point x;. From eqns (4) and (6), it may be seen that ¢/(s)=0
when wy(s)=0, that preserves the local character of the moving least squares

approximation. The nodal shape function is complete up to the order of the basis. The



smoothness of the nodal shape function is determined by that of the basis, and of the
weight function.

The choice of the weight function is more or less arbitrary, as long as the weight
function is positive and continuous. Both Gaussian and spline weight functions with
compact supports can be considered in the present work. The Gaussian weight function

corresponding to node / may be writlen as

exp[ﬁ (d; /"1 )Zf ]— CXP[_("L/CI)M] 0<d; <r
Wy (S)= l—exp[-'(ﬁ /(»'I)MJ | o

O, dIZII

)

where d; =[s—s,| is the distance from node s, to point X, ¢; is a constant controlling the
shape of the weight function w; (and therefore the relative weights), and r; is the size of
the support for the weight function w; (and thus determines the support of node sy).

A spline weight function is defined as

2 3 4
d d d
1-6 L | +8 L | =3 L1, 0<d, <
w, (x)= (,] “(] [,] . (10)

The size of support, r; of the weight function w; associated with node I should be
chosen such that r; should be large enough to have a sufficient number of nodes covered
in the domain of definition of every sample point (z>m), in order to ensure the regularity
of A. It can be easily scen that the splinec weight function (10) possesses C' continuity.
So, the MLS shape functions, and the corresponding trial functions are C' continuous

over the entire domain.
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3. Boundary Integral Equations in Linear Solid Mechanics

Let oy be the Cartesian components of the Cauchy stress tensor, and let f; be the body

force per unit volume. The equations of linear and angular momentum balance are:

0jij*+fi=0; 0 ji =0 (11)
where ( ),; denotes differentiation with respect to material coordinates x;. For a linear

elastic isotropic solid, the stress-strain relations are:

0y = Ejutn (12)

Eijmn = }'éljiamn + ru((sim(sjn + 5[/16 Jm ) (13)
where, A and p are Lame constants and J; is the Kronecker’s delta. The strain-

displacement relations arc

|
» :5(”” ity ) (14)

The boundary tractions are given by:

(=0, (15)

i

where n; are components of a unit outward normal to the closed boundary dQ=I".
Let u; be the trial functions for displacement, and let &, be the corresponding test

functions. The global weak-form of the equilibrium equation (11), can be written as:
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[, + s ia@=0 (16)

where oj; are assumed to be written as functions of «; through eqns (12) and (13).
We assume that the test functions 7, are the fundamental solutions, in infinite

space, to the Navier equations of elasticity, i.c.

lEx_)klﬁk,l J‘, +5(x_5)8/p(1/1 :O (17)

where ¢, denotes the direction of the unit load at x,=&,. We assume that the solid is

isotropic, in which case the solution i; for (17) is readily available. Thus,

iW; =u,e, (nosumlorp) (18)
and
1, =t,e, =nk, (ukl,v,) (19)

Here, u;, is the jth component of displaccment at location x,, due (o a unit load along the

pth direction at location &,. Likewise, l:p is the jth component of traction on an oricnted
surface at x,, due to a unit load along the pth direction at &, By using the divergence

theorem twice on eqn (16), and substituting eqn (17) in the resulting equation, one

obtains the integral cquation:

u, )= [, ke, (x.8) =, (0, (e G+ [ 1, (), (x. & Ja2 20)

where [ is the global boundary; and € is the global domain, enclosed by I'. By taking the

point &, in the limit, to the boundary, one may obtain the well-known boundary integral
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equation for u,. The kernel rL, is singular at the source point & with the order of
singularity being O(1//*) in 3D or O(1/r) in 2D; while the kernel u;p is weakly singular,
with the order O(1/r) in 3D or O(In(1/r)) in 2D. Hence, the order of the singularity of eqn
(20) is O(1/r*) in 3D or O(l/r) in 2D.

It is also well known that the singular kernels u;p and t;p remain integrable in the
limit when &, tends to the boundary. By a dircct differentiation of egn (20) with respect
to &, onc may obtain:

du

—aé =k €)= .[r L ()

o (5.)
dg

)] o E)
~u i (x) P i+ Q_/.,(x)——&-)—é-k-—dgz (21

In the limit as & —T, the kernel au_*,‘./, /E)&k is singular with the order of singularity being
O(1/7*) in 3D; the kernel 0f ?p /i)é,( becomes hyper-singular, with the order of singularity
being 0(l/r3) in 3D, and thus becomes numerically intractable. Hence, eqn (21) becomes
hyper-singular with the order of singularity being O(1/r’) in 3D.

To circumvent these difficultics, Okada, Rajiyah and Atluri (1989, 1994)
developed alternate types of integral represcntation for displacement gradients, which
will be introduced in the following, while they originally presented the non-hypersingular
integral equations for the Field-Boundary Element Method in nonlinear solid mechanics.

Instead of writing the global weak-form of the linear momentum balance relations
in a scalar-form as in eqn (16), Okada and Atluri (1989, 1994) wrote the global weak-

forms of the linear momentum balance relation in a three component vector form, as:

L <Ulj»i +/ )[I}.‘de =0 (22)

Assuming that the linear elastic solid is homogeneous, (22) can be rewritten as:



[ [ it 1, )i, a2 = 0 (23)

“ifmnt T mni

Integrating egn (23) by parts, applying the divergence theorem, and making use of eqn

(15), one obtains:

mmk ‘T man i

[0+ Bty =1t )T + [ Fatn,dQ+ [ £, Q=0 (24)

where

7y =~ i), 25)
and

t~m = E{jmnﬁj,i”m (26)

Upon taking #,and 7, to be the fundamental solutions as in eqns (18) and (19), one

obtains the global integral relation:

> * * *
Cu .k (g): J‘r (nk El'jmn um,nu Jpii - lm/)”m,k - tju Jp.k )(IF - J‘Q «fjll Jp.k (lQ

(27)
_ * _ * _ * dI—‘ _ . * dQ
- L (”kum,no-mnp ”n”m‘k Umnp [j” Jp .k ) Ll fjujp.k

In eqn (27), C=1 when &,eQ, and C=1/2 at a smooth part of the boundary. As compared
to eqn (21) wherein the kerncl Or;p /E)ék is involved in the boundary integral, in the

presently derived eqn (27), only the kernels u:m and r,*,,,, are involved at . Note that the

*

and

mp?

orders of singularity in which are equal, are nevertheless smaller than that
in at;p /agk . The singularities in the integrals in eqn (27) are in general tractable, and the

integrals in eqn (27) can be evaluated by the method suggested by Guiggiani and Casalini

(3



(1987) for two-dimensional casc, by Guiggiani and Gigante (1990) for three-dimensional
case, or by an alternatc method (Okada and Atluri, 1994). Once the tractions 7 at the
boundary are completely known, the displacement gradients u;; can be determined from
eqn (27) in the interior & as well as at ",

Now, we will further regularize eqn (27), in order to reduce its singularity to be

same as the orders of singularity in . The surface curl operator can be defined as

Dm =N 5?'_ (28)
Ak

where e, is the usual permutation symbol. The surface curl, eqn (28) is associated with

the following form of the Stokes’ formula:

[ D, F(x}(x) =§ f(x)ix, (29)

where I is any regular surface with the edge contour d1.

The first two terms in the extreme right side of eqn (27) can hence be written as

* *
”kum.no- —nu o = (” ”m n ”r ”m k ) nmpenk{D Mnl (30)

mnp noom, k mnp mnp

Thus, eqn (27) can be rewritten as

CU .k (5 = J (h‘o-nmpenld [)lum - { /[) A dl - J‘ /)“ ip.k dg

* 31)
= '[ ( Gnmpenkl 1) “ 1/! k )dr J‘I .fju j;)”lc([r - IQ fj,k u n dQ(X)]

The orders of singularily in u”“ and om,,/,, which are equal, are O(1/7*) in 3D. So, cqn

(31) is singular with the order of singular ()(l/rz) in 3D. This equation (31) is exactly the



same as that in Li, Mear and Xiao (1998). However, here we used a totally different and
simple method to derive it, bascd on the traction integral equation developed by Okada,
Rajiyah and Atluri (1989). In Li, Mear and Xiao (1998), a multi-valued stress function is
introduced, and the derivation is bascd on the gradient of the displacement integral
equations.

An integral relation for the traction vector then follows immediately from eqn

(31) by an application of Hook’s law, with the result:

* *

Coy (&) ==] (Fy Dy, +1,0,)d0 = Ey 1| f05,ndl - [ fia,dQ) (32)

where F,b,m(x—f):EibPke"k,o;W. It is noted that the symmetry condition
u;p (x—é):u;j (x — &) has been used. Eqn (32) is singular with the order of singular

O(1/r*) in 3D.
3.1 Weakly singular integral equations

Using Somigliana’s identity, a weakly singular displacement integral equation can
be readily obtained. This can be achicved by a subtraction techniquc often motivated by
consideration of a rigid body motion (Brebbia and Dominguez, 1992). Li, Mear and Xiao
(1998) exploited the decomposition of the stress fundamental solution, in order to obtain
a weakly singular displacement integral equation. Here, we will also use this method. The

stress fundamental solution can be decomposed as

o (x=€)=e,, G}, (x=&)-1(x=&) 33)

where



87T (I - VX;IZJ (Z) = (1 - 21}kmpj i + ()'ml/' iil‘ (34)
r o

and

anit(e)=-s, 2 y=5,% (35)

) po3
"oz, r r

where v is the Poisson’s ratio and r(z) = |[7”

Similar to Li, Mear and Xiao (1998), the following results will be used:

aclklnj (x - é) 4 ar[‘k[j (X - 5)

36
ox, dx G0

Fklmj (X - (S) = e{r/

m

where

8$7(1 = v)C,, (2)= %{— 2 -Z—:j—’(s +2(1=v)5,8,, +4v6,,8, —28,6,, } (37)

and
7,7,
87{0 - v)lvk{j (Z) = ‘L’—lli(l - 21})619'1 t €y, ——-—-"-2) } (38)

where u is the shear modulus. Thus, the traction global integral equation can be obtained

from eqa. (35-38) as [same as in Li, Mecar and Xiao (1998)]:
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1 ()= E ¥ - e Jc,,. £, (M1, 5, Co (= WD, (T

' (39)
+nb J x)(IF—rz )If,,,,,k[J‘r‘/"‘,ujun,(dl“—_‘;2 fj‘ku;de(x)]

Incorporating the decomposition (21) into (20), and utilizing Stokes’s theorem to

integrate by parts, a weakly singular integral cquation is then obtained as

Cu ( )= '[ r.(x )u”,(‘,'g'}lr+iji‘n,Lé;z—)ci)ltp(x}lr
+ [ D, ()G, (x, EXT + [ f, (), (%, & e

(40)

Note that the kernel u,(x}(¢, —x;)/r® appcaring in the second integral is only weakly
singular since n,(x)¢ —x;)/r - 0() as r—0, hence, eqn (40) involves only O(1/r)
singular kernel.

On the other hand, we can find that

1- *
n El]mn (IR jpl _ljujpk n Ur/l{jle —-n O-Uu]pk (41)

= U.y(”k" —nu i) =0, D u;

o m= jp

Thus, using eqn (41), the traction integral equation (39) can also be rewritten as

Ct,(g)=n,E ,[(G!/ e Pptt, — 1, 1, )dl

a ~abpk mejp mp

: (42)
My E gl [ F 0,0 = [ F,005,dQ(x)

The corresponding weakly singular intcgral equation can then be obtained as
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Ct, (& ) =n_(& )E”,,pk L D,o, (X>3ik,,. u ;ﬂ (x,§ )dr
1 - (5, - X )
+ ;E ”n (5 )bubpk l‘ ”i ._’_3-— u .k (X)f{r

+ ”a (5 )Enb/)k J-r Dmuj,k (Xﬁlfl’j (X’é )ir
+ ”(.Eabpk[J} fju;pnkclr—_[n fjv,cu;de(x)]

(43)

Note that the singular kernel appearing in the integral equation (43) is only weakly
singular (Cauchy singular kernel), with the order of singular O(1/r), similar to the
displacement integral equation (40) and weaker than that in equation (39). In this
equation, sccond derivatives of the shape functions are needed in constructing the global
stiffiness matrix. It is important to notc that even though the singularity of the integral
kernels has been reduced to Cauchy type, it still requires that the derivatives of the
displacements are continuous. However, the calculation of the derivatives of shape
functions from the MLS approximation is quite costly. Hence, we choose to use equation

(39) to develop the MLPG approach in this paper.

4. Solution Methods for BIE: the Meshless Local Petrov-Galerkin
(MLPG) Approach

To solve the boundary integral cquations, different methods are proposed in this section,
similar to those in traditional boundary clement methods (Atluri and Grannell, 1978).

To start with, we note that in a well-posed boundary-value problem in 3-D solid
mechanics, at any point on the boundary, any 3 quantities out of the 0, viz, i; (three) and
; (3) can be prescribed and the other 3 components are the unknowns to be solved for. In
a pure displacement boundary-value problem, all the 3-components of u; are prescribed at
every point on the surface of the 3-D solid; and correspondingly, all the three components

of #; at every point on dQ arc the unknowns. Conversely, in a pure traction boundary-



value problem, all the threc f; are prescribed at every point on 0Q, while all the 3

components of u; at J& are unknown.

4.1 Direct solution method

This method attempts to obtain a dircct numerical solution to equation (40). Upon
multiplying (40) by a continuous test function q,(&) over a local sub-domain T's (a part of

I') and applying the divergence thcorem, a local “weakly singular” weak-form of the

global displacement intcgral equation {or a system, without body force, is obtained as

[ Cu, (E)g, (), = L g, ()] 1, (<, (x, ENraT,
+ LJ q, (é‘ )sz, Si—'—:i) i, (x)l[‘dlﬁx (44)
1 1 r

+ 4, )] D, ()G (xEyrr,

To obtain the discrete equations bascd on MLS interpolation, the following

interpolations are used

ul.(s): iqﬁ’(s i (45a)
t(s)=Y o' (sk/ (45b)

q,(s)=Yw'(s)! (45¢)
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where s is a point with curvilinear co-ordinates (s1,s2), q)’(s) and 1//'(8) are the nodal
shape functions for trial and test functions centered at node, s; and s, are functions of x;.
In general, in meshless interpolations, ii! are fictitious nodal values. Substitution of eqns
(45) into formulations (44) Icads to the following discretized system of linear equations

for each node 1

2 (V/,'f.lji }, = U it ,I )=W i ,C (40)
where
Vi = v € o (), (. ETaT, (47)
Ui =~ j}}, w! j[ (10 (x =&, 0" dUdT, + G (x=£)D,9 I ydrar, (48)
Wy, =], colyldr, (49)

m is the number of the background mesh, and / is the nodal number. Due to the fact that
the first step of the dual integration is performed on the global boundary surface I, a
background mesh will have to be used on I'. It is noted that the repeated indices imply
summation here. The trial functions appcar only in the global integration over I', which
means that the integrand for the local integration over I's will be simple. It can be found
that the assembly process is not required to form a global ‘stiffness’ matrix.

The equations can be solved in the sume way as in the conventional BEM, except

. ~] — ~ -
that the transformations between 2] and i/, 7/ and 7/ must be performed, due to the
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fact that the MLS interpolates lack the delta function property of the usual BEM shape
functions [Atluri, Kim and Cho (1999), Atluri and Shen (2002a)].
On the boundary surface on which w; arc prescribed, z?i’ can be obtained by the

following transformation:

N
il =N Ry’ (50)
7=

On the boundary surface on which #; are prescribed, 7/ can be obtained by the same

transformation as the above

N
ih=Y R, (51)
J=1

where Ry, =[¢>J(s,)]‘l. The details of the transformation method for the imposition of
boundary conditions can be found in  [Atluri, Kim and Cho (1999), Atluri and Shen
(2002a)].

Based on the local weak form, the meshless local Petrov-Galerkin (MLPG)
method is used to treat the global boundary integral equations. However, due to the fact
that a global weak form is used to derive the boundary integral equations, we need a
background mesh to perform the global integration first. For the second step, to perform
the local integration, no mesh is used.

In general, in MLPG, the nodal trial and test functions can be different, the nodal
trial function may correspond to any onc of: 1. MLS; 2. Partition of unity; 3. Shepard
function; or 4. Radial basis function interpolations (Atluri and Shen, 2002a); and the test
function may be totally different. Furthermore, the size of the sub-domains over which
the nodal trial and test functions are, respectively, non-zero, may be different. Different

choices for the basis functions for the trial function, and the test functions, will lead to

21



different approximation methods. We will use the MLS interpolations introduced in
Section 2, to generate the trial functions. Based on the concept of the MLPG, the test
functions over each local boundary I’y can be chosen through a variety of ways.

As a known test function is used in the local weak form (LWF), the use of the
LWF for one point (and here for onc sub-surface TI'y) will yield only one algebraic
equation. It is noted that the trial functions w or ¢ within the sub-surface Iy, in the
interpolations without Kronecker’s Delta propertics, is determined by the fictitious nodal
values ' or 7', respectively, within the domain of definition for all points x falling
within T',. One can obtain as many cquations as the number of nodes. Hence, we need as
many local boundary surfaces I'y as thc number of nodes in the global boundary surface,
in order to obtain as many cquations as the number of unknowns. In the present paper,
dealing with 3D problems, the local boundary surface is chosen as a circle, centered at a
node x;. Four test functions are chosen to formulate four different MLPG methods for
BIE:

(1) the test function over Iy is thc same as the weight function in the MLS
approximation: The resultant Meshless Local Petrov-Galerkin Method for directly
solving the BIE is denoted as MLPG/BIEL In this case, just let W'=w' in eqns
(47), (48) and (49).

(2) the test function over I’y is the collocation Dirac’s Delta function (collocation
method): The resultant Meshless Local Petrov-Galerkin Method for directly
solving the BIE is denoted as MLPG/BIEZ. In this case, let u/=5(§') in eqns (47),
(48) and (49), then it can be found that we get the collocation BEM. The
collocation BEM can be treated simply as a special case of the MLPG approach.
Chati, Mukherjec and Mukherjee (1999) developed a boundary node method by a
coupling between boundary intcgrals equations (BIE) and Moving Least-Squarcs
(MLS) interpolants. In fact, their method can be treated simply as a special case of

the present MLPG method approach for BIE, if we let u/=5(§') in the local weak-
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form. However, here we use an entirely different regularization approach, to
avoid the strong singularity.
(3) the test function over [y is the Heaviside step function (constant over each local
sub-domain [,): The resultant Meshless Local Petrov-Galerkin Method for
solving the BIE is denoted as MLPG/BIES. In this case, let y'=1 in eqns (47),
(48) and (49).
(4) the test function over Iy is identical to the trial function (Galerkin method): The
resultant Meshless Local Petrov-Galerkin Method for solving the BIE is denoted
as MLPG/BIEG. In the Galerkin mecthod, the trial and test functions come from
the same space. In this case, let ¢; =u,(x), i.e. lct l;/=¢’ in egns (47), (48) and (49).
The interrelationships of these developments can be illustrated as in Fig. 1.
Underlying all these mcshless methods for BIE is the general concept of the meshless
local Petrov-Galerkin method; thus, MLPG provides a rational basis for constructing
meshless methods with a greater degree of flexibility. Theoretically, as long as the union
of all local domains covers the global boundary surface, the boundary integral equation
will be satisfied.

In the collocation BEM, the location of collocation nodes is an important
ingredient for the success of the method. However, if we employ MLPG method, this

issue can be avoided.
4.2 Displacement Boundary-Value Problems in Solid Mechanics
In this case, displacements are prescribed on all the boundaries. Then, the local weakly

singular weak-form displacement integral equation (44) for a system without body force

can be rewritten as
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J g, €)1 (05, (x é)/l’dr»=J§W,(§)q,,(€}”]
fq,, )f,.n =g (xWrdr (52)

"J: (/p J D, u j X‘mj( )‘Tdr

To obtain the discrete equations based on MLS interpolation, using interpolations (45b,¢),
we can obtain

Y Apiti =F, (53)

nm

where all t, are unknowns, and

A = [ v €)oo ()l (xSt (54)

,I, L Cu )// dr,
.[ v _[[ ”r{u é)”m(é)?;‘ (x)lrdlﬂlr (55)

JI’W ,[[ Dyt / /u] x s)frdr

Similar to Subsection 4.1, four test functions are chosen to formulate four differcnt
MLPG methods for the displacement BIE:
(1) MLPG/DBIE!: the test function over [, is the same as the weight function in the
MLS approximation. In this case, just let w'=w' in eqns (53)-(55).
(2) MLPG/DBIE2: the test function over I'y is the collocation Dirac’s Delta function
(collocation method). In this case, let l//z&(c‘,’) in eqns (53-55), then it can be

found that we get the collocation displacement BEM.
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(3) MLPG/DBIES: the test function over I'y is the Heaviside step function (constant
over each local sub-domain I'y). In this case, let u/:l in eqns (53)-(55).

(4) MLPG/DBIEG: the test function over [y is identical to the trial function (Galerkin
method). In this case, let ¢; =ti(x), i.c. let y'=¢'in eqns (53)-(55).

The interrelationships of these developments can also be illustrated as in Fig. 1.
4.3 Traction Boundary-Value Problem in Solid Mechanics

In this case, tractions arc prescribed on all the boundaries. Upon multiplying (39) by a
continuous test function vy(&) and applying the divergence theorem, a local weakly

singular weak-form traction integral cquation is obtained as

- J‘I‘Ci_t (é )vi (é )drx - J;‘_, D,v; (é )L anu' (X - é )_j (x)r[l“dl““,
oy €, Gl b8, e, « L] @@ Sk a6

= _ﬁ - Vi (g ).[ - Climj (X - é)l)m“j (X)(l'r({é, k f Dy, (5 )f Climj (X -‘éy)m " (X)IF(I'I‘X
oI, I I, 1

where 0T is the edge of the local boundary surface Ts. It is noted that only the weakly

*

i 1s involved in these cquations. In the present formulations, the

singular kernel «
boundary integral cquations arc satisfied in all the local boundary surfaces |
Theoretically, as long as the union of all local boundary surface covers the global
boundary surface, i.c., UI'sDI", the boundary integral equations will be satisfied in the
global boundary surface.

To obtain the discrete equations based on MLS interpolation, the following

interpolations arc used

w,(s)="> 9" (s)i! (57a)

N
I=t
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N
=Yy (sp (57b)
7=l
Substitution of eqns (57) into formulations (56) leads to following discretized system of

linear equations for each node /

Y, Hipgi) =0Q,, (58)

m

with all ﬁj are unknowns, and

H = jl‘, D! [ Cpyx=EW, 07 dTdl,

(59
B E)I’W .[ l/mJ( g)D”(f’ ( )c/rdf,
0y =~y Tt ~[[, D! [ G (x=E T Gepra
M'f G x >»(x)drdé,,, (60)

[ w'n, ©)f H (- &Y beprdr,

Similar to Subsection 4.1, four test functions are chosen to formulate four different
MLPG methods for the traction BIE:

(1) MLPG/TBIEI: the test function over Iy is the same as the weight function in the
MLS approximation. In this case, just let w'=w' in eqns (59) and (60).

(2) MLPG/TBIE2: the test function over [y is the collocation Dirac’s Delta function
(collocation mcthod). In this casc, lct 1//:5(&,’) in eqns (59), and (60), then it can
be found that we get the collocation displacement BEM.

(3) MLPG/TBIES: the test function over I'y is the Heaviside step function (constant

over each Jocal sub-domain I'y). In this case, let u/zl in eqns (59), and (60).
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(4) MLPG/TBIEG: the test function over Ty is identical to the trial function (Galerkin
method). In this case, let v; =u(x), i.e. lct l//zq)l in eqns (59), and (60).

The interrelationships of these developments can also be illustrated as in Fig. 1.

4.4 Mixed Boundary-Value Problem in Solid Mechanics

This method is developed for the special problems of fracture mechanics of linearly
elastic three-dimensional solids, containing cracks. The formulation is based both on the
displacement integral equation (40) and traction integral equation (39). When applied to
fracture problems, the traditional boundary clement methods (or the direct methods in
section 4.1) become mathematically degenerate in that when the displacement integral
equation is applied to points on the crack surface, information about the traction on the
crack is lost (Cruse, 1988). To circumvent this difficulty an integral equation for the
traction on the crack surface may be employed. Moreover, in practice, information about
the tractions on an oriented surfacc in the continuum is often required, so it is necessary
to use both the traction and displacement intcgral equations.

Upon multiplying (40) by a continuous test function gp(£) and applying the
divergence theorem, a local weakly singular weak-form of the displacement integral

equation for a system without body force is obtained [as in (44)] as

ficu, ©a, @ar, =], a,E)f 1, (), (x.E)rar,
+ ﬁj‘[ q, (5 ).[r”" g—'—r__;i)u , (x)il"df‘x (61)
+ .[1 q, (& )J‘I D,u, x)G! (x,EW0dT,
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Upon multiplying (39) by a continuous test function vp(E) and applying the

divergence theorem, a local weakly singular weak-form of the traction integral cquation

is obtained as

j Ct (EW, (), j D v j( x~ &), (x)ddl,
~§ (O] Gux=&), (jardg, + [ D, j Comf (X~ ED, 1 J( )dI“dI“J (62)

§ )] oy (x =M1, ()T G, ~—— L v (En, (€ f (x)drdr,

where dI is the edge of the focal boundary surface I's. It is noted that only the weakly

singular kernel «’, is involved in these equations.

i

In the absence of body forces, let the regular boundary be partitioned into a
portion I', on which tractions are prescribed and a portion I', on displacements are
prescribed such that I'=I", +T,. Applying the local weak-form displacement integral

cquation (61) on I, with ¢,=0 on I, and, similarly, applying the local weak-form traction

integral equation (62) on I", with =0 on I', gives rise to the formulation

Alg,t)+ B(g,u)=Flq) (for T) (63)

G(V,l)+ Hvu)= Q(l’) (forI) (04)
where

Mg =] q,€)] 1,k (xEprar, (65)
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m@.zvu% Q: 'ﬁ :é &, Axv:?v\_;&ﬁ
+ .ﬁ q, (& v._._ D,u, (x)G. (x—EWTdT,

(60)

G(v,1) 4_‘ D,v, ._. Gl (x=&),(x)drdr,
% | % Gl (x—&Y,(x}drdé, (67)
- b v, (), (& :_A__ 1, (x =&}, (x}dTdT,

:AF:VH ._._‘ Dy, Am v_.: Criny Ax IWVUE:\?Y:J&S
- %:,: Yy Am v._,_‘ Q::: Ax - M vcz_z\. Axv&_x&m.

(68)

and

% i, (€, ()T, % g, % P, (<, (x, & T,
A ¢, @) 11, (xS, (€, (xpra, )
-], 4, .7 )% b g,

o ?N )T % D, v, % G/, (x= &Y, (x)rd,
' % v, (€ % G, (x~ &), (xMrdg,,
% (En,, ( % 1! (x-&Y, (x)drdr, (70)

- bﬂ. D), €y (x=EW, i, (x)arr,
* %:‘: Vi Am v._.: ﬁ.::_\ Ax N W\ VNVS m.\. AX VAN_JQNR
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where @ and 7 are the prescribed displacement and tractions, respectively, on the
boundary I, and on the boundary I',.

To obtain the discrete cquations based on MLS interpolation, using the
interpolations (45) and (57), and substituting them into formulations (63) and (64) leads

to the following discretized system of linear cquations for each node /

2 (A;;;!f AJ T BI’:U AJJ = Flﬁ (7 1)
2 ((’I’;//Ay + III,;:I/ A; = le (72)
where
Ay = [, W' )] 07 k), (x Erar, (73)
Bl = j W j (1D (x~ &g drdl, + Gl (x - E)D,¢" JdUdT, (74)
‘;;Jj = '[ an J (’np 5)/)! drdr.\' o ﬁ)l‘l", "// ’ -I-I:' Gl;l;p (x - é»l dr(lém (75)
L jl HI(x—Ep’drdr, ‘
Hyy = [, Dy'[ €, (x=ED,¢"drdr,
’ ' (76)

B ﬁ. v f, C,, (x=&D,¢” (x)drde,
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F,=|, Cu, (Ew'ar, f W '[ 7, (x w(x,é}ll“d[fr

ll
J W J‘ a, x,f i, 5)171 (x)l[ dl,

-j W f D, i (X)) (x —EJrdr,

0, ==f, T, W dr [, Dy’ [ G, (x =&Y, (x)araT,
+ §ar, y' [ Gl (x=¢ )‘,, (x)dl dE,
+ f w'n, (& f 11 (x =&Y, (xdrdr,
B Jlj{, by L C’/’”J X- )Dn”,i (X)(ITCIF_V
+ ﬂl—.‘l’ u/, J.I',, C‘I[’Ilj (X - 5 )l)n ﬁj (X )drdlép

Similar to Subsection 4.1, four test functions are chosen to formulate four

different MLPG methods for the mixed BIE:

MLS approximation. In this casc, let u/zw' in eqns (73), (74) and (77), and

rewrite eqns (75), (70) and (78) as

Gp; —_[ D w'f an é)}) drdl” L W n" J H”j é)bjdrdf‘

Hp, J‘ D W,J- C,W ~ED, ¢’ drdT,
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(78)

m is the number of the background mesh, and / is the nodal number. It is noted that the
repeated indices imply summation here. Notc again that the trial functions appear only in

the global integration, which means that the integrand for the local integration will be

(1) MLPG/MBIEL: the test function over Ty is the same as the weight function in the

(79)

(80)



——j, CT (& w,dl, ~ jl D,w j G (x— ¥, (X},

+j won, (& j 17 (x = &Y, (x)drar, (81)

) JA[VI’ D’ H)I J‘l" Cllmj X—o )[)n”j (x)drdl ‘.\‘

Here that the test function (weight function) vanishes at dI'y is considered.

(2) MLPG/MBIE2: the test function over 'y is the collocation Dirac’s Delta function
(collocation method). In this case, let y/'=8() in eqns (73), (74) and (77), then it
can be found that we get the collocation BEM.

(3) MLPG/MBIES: the test function over T', is the Heaviside step function (constant
over each local sub-domain I7). In this case, let u/zl in eqns (73), (74) and (77),

and eqns (75), (76) and (78) can be rewrilten as

G, =—§m},’ ) LGl (x =& dTdE, - Ji. j HE(x—Ep’dldl,  (82)

iy =4, [ Co (X = EDD,0" (TS, (83)

Q, =~ CT,ENr, + ﬁ,, f(f,,,, , (x)drd,
+j n,( fH,U )drdr (84)

+ &71']’ J.r“ Ct/mj X~ )D,,H ; (x)dl“dgl

It is well-known that the numerical integration plays an important role in the
convergence of numerical solutions of meshless methods. From equation (83), it can be
seen that some surface integrals over I'y replaced by the curve integrals over oI5, which

will improve effectiveness of this mcthod.
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(4) MLPG/MBIEG: the test function over I 1s identical to the trial function (Galerkin
method). In the Galerkin method, the trial function and test function come from

the same space. In this casc, let ¢=t;(x) and v=u;(x), then we have

AL, L,¢ j 9'u’ (x,E T, (85)

By, j[(pj (1 (x~ &Y’ dTdT, + Gl (x ~£)D,¢” )dTdT,  (86)

Gy =, D.0' [ G =g’ arar, - [ ¢'n,@)f 15 (x~ &} dldl,  ®7)

11 ;I;j] = L!’ 1)/¢ ! '[ i (j/pn/ (X - é)Dn¢] drdr‘ (88)

,IJ '[ Cll (11 j ¢ J )ujp X, é)r[]"d[“
‘f[n ¢ f 115, (x,En,, (€ )i, (xHdT, (89)
-[, 0] D) (- Enra

0, =-[, i, E)'ar, - [, .0’ [ G}, (x~ &), (xarar,
+f o'n, &), 11 (x = EF, (x)rdL, (90)
~[, po'[, €, (x=E, T, (x)rdr,



If we replace the local boundary by the global boundary in the above equations, the
formulations are same as those in SGBEM [Li, Mcar and Xiao (1998)].

The interrelationships of these developments can also be illustrated as in Fig. 1. It
is noted that in all the MLPG methods in this study, the usual “element assembly”
process is not required, unlike the SGBEM, to form the global stiffness matrix.

Due to their flexibility, and due to their potential in negating the need for the
human-labor process of constructing meshes along boundary surfaces, such MLPG
methods for BIE arc espccially uscful in those problems with discontinuities or moving
boundaries. The main objcctive of the meshless methods is to get rid of, or at least
alleviate the difficulty of, meshing and remeshing the entire boundary surface; by only
adding or deleting nodes in the entire boundary surface, instead.

The MLPG methods for BIE are characterized by weakly singular kernels and
meshless local weak form. SGBEM is also characterized by weakly singular kernels, but
it is based on the global weak form and meshes [i.e., in SGBEM, two global integrals are
involved].

In SGBEM, for a specific pair of clements, which have no common points, the
ordinary Gauss rule can provide sufficient accuracy. It is not appropriate for other
elements, which are coincident or have one cdge or one vertex in common. To deal with
weakly singular integrals, therc exist methods using transformation of variables in order
to weaken or cancel out the singularity by Jacobian of the transformation before applying
the ordinary Gauss rule. Thus, in SGBEM, there exist 9 ‘weakly singular element ’,
which are coincident or have one edge or onc vertex in common with the master element,
for every master element for quadrilateral boundary elements, and 13 ‘weakly singular
elements’ for every master clement for triangular boundary elements, that need the
transformation of variable. This procedure will be costly. However, in the MLPG for

BIE, for every (master) local boundary surface I's, we can choose an appropriate



background mesh and adjust the size of I's, to make I's only involved in one background
element, that will improve the cffectiveness obviously.

In fact, this mcthod can be derived directly from the local weak-form of the
boundary conditions:

[ G =it yar=0 91)

By

[ @ —ipar=0 (92)

st

where, a priori, the equilibrium cquations and constitutive relations are satisfied. Using
equations (40) and (39) to represents 1; and ¢ respectively, we can obtain the method

developed in this subsection.
4.5 Boundary Variational Principle

This subsection deals with boundary solution methods, based on a boundary variational
principle [Atluri and Grannell (1978)]. The functions that are assumed to be independent
are: displacement u in the domain; boundary displacement @; and boundary traction
t [which is a Lagrange multipler to enforce u=a at I'].

The corresponding variational functional IT,, for linear elasticity, is defined as
follows:

I o - ~ ~
:inaii&ﬁdg_ﬁ‘,’fl“(ll - J‘I" 1 (u; —u)dl (93)

r
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where the boundary displacement ii satisfies the essential boundary condition, i.e., i =u

on I, f, is the prescribed traction on the traction boundary I, and no body force is

considered.

By carrying out the variations il can be shown that

o, = L (t, — 7)Su,dl - L G, O, d+ j[ (7, = 1)8i,dT = | (u, =&l (94)

with the vanishing of 8I1,, onc can also have the following equivalent integral equations:

[ @ -1)dudr-| o, 8 d2=0 | 95)
[, —ii)sidr=0 (96)
[ @ =ipsi.ar=o (97)

All 7 and & are unknown. The traction (natural) boundary condition { =1 on [ and the
essential boundary condition @ =i on [, arc satisfied a priori, hence, it can be ignored
temporarily in the following development.

It can be seen that equations (95) and (96) hold in any sub-domain. According to
the concept of the MLLPG (Atluri and Shen, 2002a), we use the following weak forms on
a sub-domain € and the corresponding boundary I's to replace equations (95) and (90)

_L (t - ’.’)V,-cir—.‘;zx . v.dQ2=0 98)
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[ =ii)q,dr=0 (99)

where v and q arc test functions, and the choice of different test function leads to
different MLPG methods. If we take the test functions as the weight function in the MLS
approximation, we will obtain the method developed in Zhang and Yao (2001), however,
the local weak forms used here are a little different from those in Zhang and Yao (2001),
where the boundary of the subdomain € is involved, that actually should not appear. If
the subdomain € does not intersect with the boundary, equation (98) will not include the
boundary integral. In equations (98) and (99),iiand t on the boundary, and v and q are
interpolated according to cquations (45) and (57b). The u and t inside & and on T" are

defined as [Atluri and Granncll (1978), Zhang and Yao (2001)]

N
_ [t
W= 2”!1)”/)
=

N

_ I
ti - Zlipap
{=1

(100)

where uj,, and ¢}, are the fundamental solutions with the source point at a node /, a], are
unknown parameters. We only consider the nodes on the boundary.

As u is expressed by equation (100), the last integral on the left-hand side of
equation (98) vanishes if onc excludes node J from the subdomain £, at which the
singularity occurs. This singularity will be considered when evaluating the boundary
integrals. Then by substituting cquations (45), (57) and (100) into (98) and (99), and
omitting the vanished terms, we can obtain the final system of equations. The equations
can be solved in the same way as that in Subsection 4.1.

Similar to Subsection 4.1, four test functions are chosen to formulate four

different MLPG methods for boundary variational principle:
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(1) MLPG1: the test functions v; and ¢, over I, are the same as the weight function in
the MLS approximation. Then it can be found that we obtian the method
developed in Zhang and Yao (2001).

(2) MLPG2: the test functions v; and ¢;, over T is the collocation Dirac’s Delta
function (collocation method).

(3) MLPGS: the test functions v; and g¢;, over [y is the Heaviside step function
(constant over each local sub-domain I')

(4) MLPGG: the test functions v; and ¢;, over I’y is identical to the trial function

(Galerkin method). In this case, let v; =i7; and ¢; =1;.

5. Conclusion

The meshless local Petrov-Galerkin method (MLPG) method is extended to treat
the boundary integral equations in this paper. Five boundary integral solution methods
are introduced: direct solution method; displacement boundary-value problem; traction
boundary-value problem; mixed boundary-value problem; and boundary variational
principle. Based on the local weak form of BIE, four different nodal-based local test
functions arc selected, leading to four different MLPG methods for each BIE solution
method. These methods combine the advantage of the MLPG and the boundary element
method.

A very simple method is used to derive the weakly singular traction boundary
integral equation based on the integral relationships for displacement gradients [Okada
and Atluri, 1989].

Numerical implementation and demonstrations of the advantages of the presently

proposed MLPG method for BIE will be discussed by the authors in forthcoming papers.
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Fig.1 Interrelationship of meshless methods for BIE.
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